Finding structure in data using multivariate tree boosting

نویسندگان

  • Patrick J. Miller
  • Gitta H. Lubke
  • Daniel B. McArtor
  • C. S. Bergeman
چکیده

Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause 2 or more outcome variables to covary. We provide the R package "mvtboost" to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package "gbm" (Ridgeway, 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. (PsycINFO Database Record

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Mining and Hotspot Detection in an Urban Development Project

Modern statistical analysis often involves large amount of data from many application areas with diverse data types and complicated data structures. This paper gives a brief survey of certain large-scale applications. In addition, this paper compares a number of data mining tools in the study of a specific data set which has 1.4 million cases, 14 predictors and a binary response variable. The s...

متن کامل

Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...

متن کامل

Boosting the Performance of Iterative Closest Point Scan Matching Algorithms using Quad Trees

This paper presents a boosting approach to improve the robustness and accuracy of iterative closest point (ICP) scan matching algorithms. The focus is on reducing the correspondence error by providing a more complete and denser frame of reference to match new scans. Using our approach a new scan is matched simultaneously against all relevant scans observed in the past. By making use of the effi...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychological methods

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2016